Goto Chapter: Top 1 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 smallantimagmas automatic generated documentation
 1.1 smallantimagmas automatic generated documentation of properties
 1.2 smallantimagmas automatic generated documentation of attributes
 1.3 smallantimagmas automatic generated documentation of global functions
 1.4 smallantimagmas automatic generated documentation of methods

1 smallantimagmas automatic generated documentation

1.1 smallantimagmas automatic generated documentation of properties

1.1-1 IsAntiassociative
‣ IsAntiassociative( M )( property )

Returns: true or false

identifies whether magma M is antiassociative.

gap> IsAntiassociative(OneSmallGroup(16));
false
gap> IsAntiassociative(OneSmallAntimagma(2));
true
gap> IsAntiassociative(OneSmallAntimagma(3));
true

1.1-2 IsLeftCyclic
‣ IsLeftCyclic( M )( property )

Returns: true or false

if magma is left cyclic m.

1.1-3 IsRightCyclic
‣ IsRightCyclic( M )( property )

Returns: true or false

if magma is left cyclic m.

1.1-4 IsLeftCancellative
‣ IsLeftCancellative( M )( property )

Returns: true or false

if magma is left cancellative m.

gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> Display( MultiplicationTable(M) );
[ [  2,  1 ],
  [  2,  1 ] ]
gap> IsRightCancellative(M);
false
gap> IsLeftCancellative(M);
true
gap> List(AllSmallAntimagmas(2), M -> IsLeftCancellative(M));
[ true, false ]

1.1-5 IsRightCancellative
‣ IsRightCancellative( M )( property )

Returns: true or false

if magma is right cancellative m.

gap> List(AllSmallAntimagmas(2), M -> IsRightCancellative(M));
[ false, true ]

1.1-6 IsCancellative
‣ IsCancellative( M )( property )

Returns: true or false

if magma is cancellative m.

gap> List(AllSmallAntimagmas(2), M -> IsCancellative(M));
[ false, false ]

1.2 smallantimagmas automatic generated documentation of attributes

1.2-1 AssociativityIndex
‣ AssociativityIndex( M )( attribute )

identifies associativity index of M.

gap> OneSmallAntimagma(2);
<magma with 2 generators>
gap> AssociativityIndex(OneSmallAntimagma(2));
0
gap> OneSmallGroup(4);
<pc group of size 4 with 2 generators>
gap> AssociativityIndex(OneSmallGroup(4));
64
gap> AssociativityIndex(OneSmallGroup(4)) = 4 ^ 3;
true

1.2-2 DiagonalOfMultiplicationTable
‣ DiagonalOfMultiplicationTable( M )( attribute )

computes diaognal of multiplication table of M.

gap> List(AllSmallAntimagmas(3), M -> DiagonalOfMultiplicationTable((M)));                
[ [ 2, 1, 1 ], [ 2, 1, 1 ], 
  [ 2, 3, 2 ], [ 2, 1, 1 ], 
  [ 2, 1, 1 ], [ 2, 1, 2 ], 
  [ 2, 3, 2 ], [ 2, 1, 2 ], 
  [ 2, 3, 1 ], [ 2, 3, 1 ]
]

1.2-3 CommutativityIndex
‣ CommutativityIndex( M )( attribute )

identifies commutativity index of M.


1.2-4 AnticommutativityIndex
‣ AnticommutativityIndex( M )( attribute )

calculates anticommutativity index of M.

1.2-5 SquaresIndex
‣ SquaresIndex( M )( attribute )

computes squares index of M so the order of \(\left\{ m^2 | m \in M \right\}\).

gap> List(AllSmallAntimagmas(2), M -> List(M, m -> m * m) );                
[ [ m2, m1 ], [ m2, m1 ] ]
gap> List(AllSmallAntimagmas(2), M -> SquaresIndex(M ));
[ 2, 2 ]
gap> List(AllSmallAntimagmas(3), M -> SquaresIndex(M ));
[ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3 ]

1.2-6 IdSmallAntimagma
‣ IdSmallAntimagma( M )( attribute )

identifies class of antiassociative magma M.

gap> IsAntiassociative(OneSmallGroup(16));
false
gap> IsAntiassociative(OneSmallAntimagma(2));
true
gap> IsAntiassociative(OneSmallAntimagma(3));
true

1.2-7 LeftOrder
‣ LeftOrder( [m] )( attribute )

returns a left order of element m.

1.2-8 RightOrder
‣ RightOrder( [m] )( attribute )

returns a right order of element m.

1.2-9 LeftOrdersOfElements
‣ LeftOrdersOfElements( [m] )( attribute )

returns a left order of element m.

1.2-10 RightOrdersOfElements
‣ RightOrdersOfElements( [m] )( attribute )

returns a left order of element m.

1.3 smallantimagmas automatic generated documentation of global functions

1.3-1 AllSubmagmas
‣ AllSubmagmas( M )( function )

builds a collection of non-isomorphic submagmas of M.

gap> AllSmallAntimagmas(2);
[ <magma with 2 generators>, <magma with 2 generators> ]
gap> List(AllSmallAntimagmas(2), M -> AllSubmagmas(M));
[ [ <magma with 1 generator> ], [ <magma with 1 generator> ] ]

1.3-2 MagmaIsomorphismInvariantsMatch
‣ MagmaIsomorphismInvariantsMatch( M )( function )

computes isomorphism invariants of M.

1.3-3 IsMagmaIsomorphic
‣ IsMagmaIsomorphic( M, N )( function )

identifies whether magmas M, N are isomorphic.

gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> T := MagmaByMultiplicationTable([ [2, 1], [2, 1] ]);
<magma with 2 generators>
gap> IsMagmaIsomorphic(M, M);
true
gap> IsMagmaIsomorphic(M, T);
true
gap> IsMagmaIsomorphic(M, N);
false

1.3-4 IsMagmaAntiisomorphic
‣ IsMagmaAntiisomorphic( [M, N] )( function )

identifies whether magmas M, N are antiisomorphic.

gap> N := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> IsMagmaAntiisomorphic(M, M);
false
gap> IsMagmaAntiisomorphic(M, N);
true
gap> IsMagmaAntiisomorphic(M, TransposedMagma(M));
true

1.3-5 TransposedMagma
‣ TransposedMagma( [M] )( function )

generates transposed magma M.

gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> IsMagmaAntiisomorphic(M, TransposedMagma(M));
true
gap> IsMagmaIsomorphic(M, TransposedMagma(TransposedMagma(M)));
true
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> Display(MultiplicationTable(M));
[ [  2,  1 ],
  [  2,  1 ] ]
gap> Display(MultiplicationTable(TransposedMagma(M)));
[ [  2,  2 ],
  [  1,  1 ] ]

1.3-6 LeftPower
‣ LeftPower( [m, k] )( function )

returns a left \(k\)-power of element m.

1.3-7 RightPower
‣ RightPower( [m, k] )( function )

returns a right \(k\)-power of element m.

1.3-8 AllSmallAntimagmas
‣ AllSmallAntimagmas( n )( function )

returns all antiassociative magmas of specified size n (a number)

gap> AllSmallAntimagmas(2);
[ <magma with 2 generators>, <magma with 2 generators> ]
gap> AllSmallAntimagmas(3);
[ 
  <magma with 3 generators>, <magma with 3 generators>, <magma with 3 generators>,
  <magma with 3 generators>, <magma with 3 generators>, <magma with 3 generators>,
  <magma with 3 generators>, <magma with 3 generators>,
  <magma with 3 generators>, <magma with 3 generators>
]

1.3-9 NrSmallAntimagmas
‣ NrSmallAntimagmas( n )( function )

counts number of antiassociative magmas of specified size n (a number).

gap> NrSmallAntimagmas(2);
2
gap> NrSmallAntimagmas(3);
10
gap> NrSmallAntimagmas(4);
17780

1.3-10 SmallAntimagma
‣ SmallAntimagma( n, i )( function )

returns antiassociative magma of id [n, i].

gap> SmallAntimagma(2, 1);
<magma with 2 generators>
gap> SmallAntimagma(4, 5);
<magma with 4 generators>

1.3-11 OneSmallAntimagma
‣ OneSmallAntimagma( n )( function )

returns a random antiassociative magma of size n.

gap> OneSmallAntimagma(2);
<magma with 2 generators>

gap> OneSmallAntimagma(3);
<magma with 3 generators>

1.3-12 ReallyAllSmallAntimagmas
‣ ReallyAllSmallAntimagmas( n )( function )

returns really-all antiassociative magmas, isomorphic, of specified size n (a number)

gap> ReallyAllSmallAntimagmas(2);
[ <magma with 2 generators>, <magma with 2 generators> ]

1.3-13 ReallyNrSmallAntimagmas
‣ ReallyNrSmallAntimagmas( n )( function )

counts number of antiassociative magmas of specified size n (a number)

gap> ReallyNrSmallAntimagmas(3);
52

1.3-14 AntimagmaGeneratorPossibleDiagonals
‣ AntimagmaGeneratorPossibleDiagonals( n )( function )

returns all possible diagonals of multiplication table for [n]-antimagma.

gap> AntimagmaGeneratorPossibleDiagonals(2);
[ [ 2, 1 ] ]
gap> AntimagmaGeneratorPossibleDiagonals(3);
[ 
  [ 2, 1, 1 ], [ 2, 1, 2 ], [ 2, 3, 1 ], [ 2, 3, 2 ], 
  [ 3, 1, 1 ], [ 3, 1, 2 ], [ 3, 3, 1 ], [ 3, 3, 2 ] 
]

1.3-15 AntimagmaGeneratorFilterNonIsomorphicMagmas
‣ AntimagmaGeneratorFilterNonIsomorphicMagmas( Ms )( function )

filters non-isomorphic magmas m.

1.4 smallantimagmas automatic generated documentation of methods

1.4-1 MagmaIsomorphism
‣ MagmaIsomorphism( M, N )( operation )

computes an isomoprhism between magmas M, N.

gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := MagmaByMultiplicationTable([ [2, 1], [2, 1] ]);
<magma with 2 generators>
gap> MagmaIsomorphism(M, N);
<mapping: Domain([ m1, m2 ]) -> Domain([ m1, m2 ]) >

1.4-2 MagmaAntiisomorphism
‣ MagmaAntiisomorphism( M, N )( operation )

creates an antiisomoprhism between magmas M, N.

gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> MagmaAntiisomorphism(M, N);
<mapping: Domain([ m1, m2 ]) -> Domain([ m1, m2 ]) >
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 Ind

generated by GAPDoc2HTML